
Skeleton graph of the heptapeton
A heptapeton is a 6-dimensional simplex. It is also called the pyropeton under the elemental naming scheme.
Properties
Hypervolumes
- vertex count = $ 7 $
- edge length = $ 21l $
- surface area = $ \frac { 35\sqrt { 3 } }{ 4 } { l }^{ 2 } $
- surcell volume = $ \frac { 35\sqrt { 3 } }{ 12 } { l }^{ 3 } $
- surteron bulk = $ \frac { 7\sqrt { 5 } }{ 32 } { l }^{ 4 } $
- surpeton pentavolume = $ \frac { 7\sqrt { 3 } }{ 480 } { l }^{ 5 } $
- surexon hexavolume = $ \frac { \sqrt { 7 } }{ 5760 } { l }^{ 6 } $
Subfacets
- 7 points (0D)
- 21 lines (1D)
- 35 triangles (2D)
- 35 tetrahedra (3D)
- 21 pentachora (4D)
- 7 hexatera (5D)
Zeroth | First | Second | Third | Fourth | Fifth | Sixth | Seventh | Eighth | Ninth | Tenth | Eleventh | Twelfth | Thirteenth | Fourteenth | Fifteenth | Sixteenth | Simplex | Point | Line | Triangle | Tetrahedron | Pentachoron | Hexateron | Heptapeton | Octaexon | Enneazetton | Decayotton | Hendecaxennon | Dodecadakon | Tredecahendakon | Quattuordecadokon | Quindecatradakon | Sexdecateradakon | Septendecapetadakon | Hypercube | Point | Line | Square | Cube | Tesseract | Penteract | Hexeract | Hepteract | Octeract | Enneract | Dekeract | Undekeract | Dodekeract | Tredekeract | Quattuordekeract | Quindekeract | Sexdekeract | Cross | Point | Line | Square | Octahedron | Hexadecachoron | Pentarss | Hexarss | Heptarss | Octarss | Ennearss | Decarss | Hendecarss | Dodecarss | Tredecarss | Quattuordecarss | Quindecatrarss | Sexdecaterarss | Hypersphere | Point | Line | Circle | Sphere | Glome | Hyperglome | Hexaphere | Heptaphere | Octaphere | Enneaphere | Decaphere | Hendecaphere | Dodecaphere | Tredecaphere | Quattuordecaphere | Quindecatraphere | Sexdecateraphere |
---|