This number is so big it is 100% of the size of the Omniverse !
It sadly doesn't end in a number between 1 and 7420 steps.
Formula:
M
E
a
1
=
M
a
1
=
4
{\displaystyle MEa_{1}=Ma_{1}=4}
M
E
a
2
=
M
S
a
2
=
M
a
M
a
M
a
M
a
2
{\displaystyle MEa_{2}=MSa_{2}=Ma_{Ma_{Ma_{Ma_2}}}}
M
E
a
3
=
M
H
a
3
=
M
S
a
M
S
a
.
.
.
M
S
a
3
⏞
M
S
a
3
MSa's
{\displaystyle MEa_{3}=MHa_{3}=\overbrace{MSa_{MSa_{..._{MSa_{3}}}}}^{MSa_{3} \text{ MSa's}}}
M
E
a
4
=
M
U
a
4
=
M
H
a
M
H
a
.
.
.
M
H
a
4
⏞
M
H
a
4
MHa's
{\displaystyle MEa_{4}=MUa_{4}=\overbrace{MHa_{MHa_{..._{MHa_{4}}}}}^{MHa_{4} \text{ MHa's}}}
M
E
a
5
=
f
5
5
=
M
U
a
M
U
a
.
.
.
M
U
a
5
⏞
M
U
a
4
MUa's
{\displaystyle MEa_{5}=f5_{5}=\overbrace{MUa_{MUa_{..._{MUa_{5}}}}}^{MUa_{4} \text{ MUa's}}}
M
E
a
6
=
f
6
6
=
f
5
f
5
.
.
.
f
5
6
⏞
f
5
4
f5's
{\displaystyle MEa_{6}=f6_{6}=\overbrace{f5_{f5_{..._{f5_{6}}}}}^{f5_{4} \text{ f5's}}}
⋯
{\displaystyle \cdots}
M
E
a
7419
=
f
7419
1419
=
f
7418
f
7418
.
.
.
f
7418
4
⏞
f
7418
4
f7417's
{\displaystyle MEa_{7419}=f7419_{1419}=\overbrace{f7418_{f7418_{..._{f7418_{4}}}}}^{f7418_{4} \text{ f7417's}}}
M
E
a
7420
=
f
7420
1420
=
f
7419
f
7419
.
.
.
f
7419
4
⏞
f
7419
4
f7419's
{\displaystyle MEa_{7420}=f7420_{1420}=\overbrace{f7419_{f7419_{..._{f7419_{4}}}}}^{f7419_{4} \text{ f7419's}}}
M
E
a
7421
=
f
7421
1421
=
f
7420
f
7420
.
.
.
f
7420
4
⏞
f
7420
4
f7420's
{\displaystyle MEa_{7421}=f7421_{1421}=\overbrace{f7420_{f7420_{..._{f7420_{4}}}}}^{f7420_{4} \text{ f7420's}}}
Conclusion: Still, it is really big. Maybe it is bigger than TREE(3)? Only Leftunknown knows. It is also MEa7421 . This random number is the product of the first ten prime numbers divided by 1e12 (1 trillion).