3,406
pages

The Miner Enumeration, is a system of letters for shortening numbers, like ${\displaystyle \eth , \mho , \ell , \Re , \hbar , \aleph}$ made up by Miners.

${\displaystyle \eth=10^{\pi^2}\approx 7,406,352,891}$

${\displaystyle \ell=10^{3^{R_2}}\approx 153,607,762,635,675}$

${\displaystyle \Re=10^{6!}=10^{720}}$

${\displaystyle \mho=2^{\eth}\approx 10^{2,229,534,379}}$

${\displaystyle \hbar=\pi^{\Re}\approx 10^{10^{719.7}}}$

${\displaystyle \wp=1+\left ( \frac{1}{\eth} \right)^\ell\approx 1}$

${\displaystyle \Im=(10i+R_2)^{\pi^{\pi}}\approx (-4.681\times 10^{35})-(8.128\times 10^{36}i)}$

${\displaystyle \backepsilon \text{ =}}$ inaccesible cardinal.

${\displaystyle \imath \text{ =}}$ 0=1 cardinal.

${\displaystyle \complement_1\text{ = }0=\imath}$ cardinal

${\displaystyle \complement_2\text{ = }0=\complement_1}$ cardinal

${\displaystyle \complement_3\text{ = }0=\complement_2}$ cardinal

${\displaystyle \complement_n\text{ = }0=\complement_{n-1}}$ cardinal

${\displaystyle \complement_0\text{ = }\imath}$

${\displaystyle \infty=\text{number of digits of pi}^2}$

Watch this video for ${\displaystyle \aleph_n}$

Also, in the ${\displaystyle \ell}$ and ${\displaystyle \Im}$ formulas you saw a R2 right? This means "Ratio of 2", or ${\displaystyle 1+\sqrt {2}}$, this is the formula for Rn: ${\displaystyle \frac{n+\sqrt{n^2+4}}{2}}$. And yes, i saw this on a Youtube channel that i dont remember the name.