Miner Sequence is (probably) a useless sequence.
I saw this sequence on the Mandelbrot Formula
Formula:
Y 1 ( 2 ) = ( 0 2 ) + 1 = 1 {\displaystyle Y_1(2)=(0^2)+1=1}
Y 2 ( 2 ) = ( 1 2 ) + 1 = 2 {\displaystyle Y_2(2)=(1^2)+1=2}
Y 3 ( 2 ) = ( 2 2 ) + 1 = 5 {\displaystyle Y_3(2)=(2^2)+1=5}
Y 4 ( 2 ) = ( 5 2 ) + 1 = 26 {\displaystyle Y_4(2)=(5^2)+1=26}
Y 5 ( 2 ) = ( 26 2 ) + 1 = 676 {\displaystyle Y_5(2)=(26^2)+1=676}
Y 1 ( 3 ) = ( 0 3 ) + 1 = 1 {\displaystyle Y_1(3)=(0^3)+1=1}
Y 2 ( 3 ) = ( 1 3 ) + 1 = 2 {\displaystyle Y_2(3)=(1^3)+1=2}
Y 3 ( 3 ) = ( 2 3 ) + 1 = 7 {\displaystyle Y_3(3)=(2^3)+1=7}
Y 4 ( 3 ) = ( 2 3 ) + 1 = 344 {\displaystyle Y_4(3)=(2^3)+1=344}
Y n ( d ) = f n = ( n d ) + 1 {\displaystyle Y_n(d)= f_n=(n^d)+1 }