An Octahedron is the three-dimensional cross polytope. It is the dual of a cube - in other words, it is a cube where all vertices have been replaced with faces and all faces have been replaced with vertices. It is also the triangular antiprism, a fact that can clearly be seen from its graph. In addition it is a square bipyramid, meaning it is composed of two square pyramids stuck together at their bases. The dihedral angle of an octahedron is the arcos(-13). The octahedron has four triangle meeting at a vertex.

## Contents

### Other Names

Jonathan Bowers calls the octahedron an Oct, a shortened form of its name. The Higher Dimensions wiki sometimes calls this shape an Aerohedron, from aero- referring to a cross polytope and -hedron referring to three dimensions.

It can also be called a rectified tetrahedron or tetratetrahedron, as it can be made by truncating a tetrahedron to the midpoints of the edges. In this form it can be represented as .

### Structure

The octahedron is composed of 8 triangles, with four of them meeting at each vertex. It is formed of two suare pyramids joined together. It is also a triangular antiprism, composed of two triangles, in dual orientations, joined by a band of 6 triangles.

### Hypervolumes

• vertex count = • edge length = • surface area = • surcell volume = 