TREEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE(3) is really big. Its 0% of the size of The Box in Omniversal units. I'm sure it's smaller than TREE(3) because Leftunknown always says that my extremely big numbers are smaller than TREE(3).
The formula is really complicated. Anyway, here it is:
T
R
E
E
(
⋯
(
T
R
E
E
(
3
)
)
)
⏟
T
R
E
E
(
⋯
(
T
R
E
E
(
3
)
)
)
⏟
⋮
⏟
T
R
E
E
(
⋯
(
T
R
E
E
(
3
)
)
)
⏟
T
R
E
E
(
3
)
)
}
T
R
E
E
(
⋯
(
T
R
E
E
(
3
)
)
)
⏟
T
R
E
E
(
⋯
(
T
R
E
E
(
3
)
)
)
⏟
⋮
⏟
T
R
E
E
(
⋯
(
T
R
E
E
(
3
)
)
)
⏟
T
R
E
E
(
3
)
)
}
⋯
}
T
R
E
E
(
⋯
(
T
R
E
E
(
3
)
)
)
⏟
T
R
E
E
(
⋯
(
T
R
E
E
(
3
)
)
)
⏟
⋮
⏟
T
R
E
E
(
⋯
(
T
R
E
E
(
3
)
)
)
⏟
T
R
E
E
(
3
)
)
}
T
R
E
E
(
3
)
⏞
T
R
E
E
(
⋯
(
T
R
E
E
(
3
)
)
)
⏞
T
R
E
E
(
⋯
(
T
R
E
E
(
3
)
)
)
⏞
T
R
E
E
(
3
)
{\displaystyle
\overbrace{\left.
\begin{matrix}
\underbrace{TREE(\cdots(TREE(3)))}_{\underbrace{TREE(\cdots(TREE(3)))}_{\underbrace{\qquad\vdots\qquad}_{\underbrace{TREE(\cdots(TREE(3)))}_{TREE(3))}}}}
\end{matrix}
\right \} \left.
\begin{matrix}
\underbrace{TREE(\cdots(TREE(3)))}_{\underbrace{TREE(\cdots(TREE(3)))}_{\underbrace{\qquad\vdots\qquad}_{\underbrace{TREE(\cdots(TREE(3)))}_{TREE(3))}}}}
\end{matrix}
\right \}\cdots \} \left. \begin{matrix}
\underbrace{TREE(\cdots(TREE(3)))}_{\underbrace{TREE(\cdots(TREE(3)))}_{\underbrace{\qquad\vdots\qquad}_{\underbrace{TREE(\cdots(TREE(3)))}_{TREE(3))}}}}
\end{matrix} \right \} TREE(3)}^{\overbrace{TREE(\cdots(TREE(3)))}^{\overbrace{TREE(\cdots(TREE(3)))}^{TREE(3)}}}
}
Maybe it is even bigger than Loader's Number... (edit: nope)